Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

نویسندگان

  • John J Macauley
  • Zhimin Qiang
  • Craig D Adams
  • Rao Surampalli
  • Melanie R Mormile
چکیده

Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultraviolet Light

Ultraviolet light (UV) is a recognized disinfection alternative to chlorine and ozone in many applications from drinking water to wastewater treatment. UV provides effective disinfection without production of problematic disinfection byproducts. Information on the mechanism and application of UV for drinking water disinfection is presented. Advantages and disadvantages of the technique are disc...

متن کامل

The formation and control of emerging disinfection by-products of health concern.

When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and br...

متن کامل

Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water.

The effectiveness of UV and chlorination, used individually and sequentially, was investigated in killing pathogenic microorganisms and inhibiting the formation of disinfection by-products in two different municipal wastewaters for the source water of reclaimed water, which were from a microfilter (W1) and membrane bioreactor (W2) respectively. Heterotrophic plate count (HPC), total bacteria co...

متن کامل

Disinfection efficiency of secondary effluents with ultraviolet light in a Mediterranean area

This paper deals with the study of physicochemical and microbiological parameters affecting disinfection efficiency of secondary effluents in a municipal wastewater treatment plant, for irrigation purposes. There appears to be an important increase on turbidity values as chlorine values increases, due to the conversion of particulate organic carbon into dissolved organic carbon. The nitrificati...

متن کامل

Disinfection of Primary Municipal Wastewater Effluents Using Continuous UV and Ozone Treatment

UV radiation and ozonation were investigated as disinfection alternatives for the wastewater treatment plant. The inactivation of total and fecal coliforms using ozone and ultraviolet radiation as separate treatments was evaluated. Different ozone concentrations (3 to 40 mg O3/L) were applied and UV fluencies ranging from 8.5 to 12 mJ/cm at different pH values (from 5 to 9) were tested. Best re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 40 10  شماره 

صفحات  -

تاریخ انتشار 2006